Structural Studies of the Novel Antitumor Agents 4-Aminoand 4-Methoxy8 -(β-D-ribofuranosylamino)pyrimido[$5,4-d$]pyrimidines and Their α-Anomers Using X-ray, ${ }^{1} \mathrm{H}$ NMR, and Theoretical Methods

Arup K. Ghose,* Yogesh S. Sanghvi, Steven B. Larson,* Ganapathi R. Revankar, and Roland K. Robins
Contribution from the ICN Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, California 92626. Received July 3, 1989

Abstract

The structural properties of the new antitumor agents 4 -amino- (ARPP, 1a) and 4-methoxy-8-(β-D-ribofuranosylamino) pyrimido[$5,4-d]$ pyrimidines (MRPP, 1b) and the corresponding α-a nomers $\mathbf{2 a}$ and $\mathbf{2 b}$ were studied by using molecular mechanics, molecular orbital (AM1) calculations, X-ray diffraction, and ${ }^{1} \mathrm{H}$ NMR spectral data. In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}$ and $\mathbf{1 b}$ at elevated temperature, substantial upfield shifts for the exocyclic $\mathrm{N} H$ proton resonance were observed as compared to the spectra of the α-anomers. The crystal structures of MRPP ($\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, 1b) and its α-anomer $\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{~b}\right)$ have been determined by single-crystal X-ray diffraction techniques employing $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Nucleoside 1b crystallized in the monoclinic space group $C 2$ with cell dimensions $a=13.309$ (3) $\AA, b=8.211$ (2) $\AA, c=14.025$ (5) $\AA, \beta=112.37(3)^{\circ}$, and $Z=4$. The structure was refined to a conventional R value of 0.0346 for 2369 reflections ($F \geq 4 \sigma_{F}$). The α-a nomer 2 b crystallized in the monoclinic space group $/ 2$ with cell dimensions $a=14.543$ (2) $\AA, b=4.7405$ (13) \AA, $c=21.355$ (7) $\AA, \beta=95.041(14)^{\circ}$, and $Z=4$ and was refined to $R=0.0338$ for 2524 reflections $\left(F \geq 4 \sigma_{F}\right)$. The sugar conformations and puckering parameters are ${ }^{3} T_{2}\left(\mathrm{C}^{\prime}\right.$-endo $/ \mathrm{C} 2^{\prime}$-exo), $P=-1.3^{\circ}$, and $\tau_{\mathrm{m}}=36.5^{\circ}$ for 1 b and ${ }_{2} T^{3}$ ($\mathrm{C} 2^{\prime}$ exo $/ \mathrm{C}^{\prime}$-endo), $P=0.6^{\circ}$, and $\tau_{\mathrm{m}}=38.9^{\circ}$ for 2 b . The dihedral angles between the fused pyrimidine rings are $2.55(10)^{\circ}$ for $\mathbf{1 b}$ and $1.09(9)^{\circ}$ for $\mathbf{2 b}$. In each structure ($\mathbf{1 b}$ and $\mathbf{2 b}$), all hydroxyl and amino hydrogen atoms are involved in intermolecular hydrogen bonding; no intramolecular hydrogen bonding is observed. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5'-deoxy-MRPP (3d) also exhibited an upfield shift for the exocyclic $N H$ proton signal at elevated temperature. An analysis of the molecular mechanics and molecular orbital conformational results together with X-ray crystallography and ${ }^{1} \mathrm{H}$ NMR data indicates that the reversible upfield shift shown by the exocyclic $N H$ proton of these β-nucleosides is a conformational property rather than an effect of intramolecular hydrogen bonding.

We recently reported the synthesis and antitumor activity of several exocyclic aminonucleosides, ${ }^{1-5}$ including 4 -substituted 8 -(D-ribofuranosylamino) pyrimido $[5,4-d]$ pyrimidines ${ }^{1}$ (1, 2). Among these nucleosides, 8-(D-ribofuranosylamino) derivatives of 4 -aminopyrimido[5,4- d] pyrimidine [ARPP, both β - (1a) and α - (2a) anomers] and 4-methoxypyrimido[5,4- α] pyrimidine (β MRPP, 1b) have shown promising antitumor activity against L1210, WI-L2, and LoVo/L cells in culture and against L1210 in mice. ${ }^{1.5}$ The antitumor activity displayed by these nucleosides results from a sequence of enzyme interactions. First, the nucleosides are phosphorylated by adenosine kinase; second, the monophosphate thus formed inhibits PRPP synthetase. Although these nucleosides do not structurally resemble adenosine, they do act as substrates for adenosine kinase. Using our molecular modeling software REMOTEDISC. ${ }^{7}$ we recently showed that these nucleosides, in some of their low-energy conformations, do resemble adenosine, thereby mimicking adenosine in adenosine kinase activity. ${ }^{8}$ The observed antitumor activity ${ }^{1}$ and the in-

[^0]teresting molecular modeling studies ${ }^{8}$ warranted a detailed structural study of these unusual nucleosides.

The ${ }^{1} \mathrm{H}$ NMR spectra of these compounds showed that the exocyclic $\mathrm{N} H$ proton resonates at lower field in the β-anomers (1) compared to the α-anomers (2). The study of the temperature dependence of this proton signal in $\mathbf{1}$ and $\mathbf{2}$ also revealed that it resonates at increasingly higher field, in the β-anomer only, as the temperature is increased. Such effects could be attributed to intramolecular hydrogen bonding. Furthermore, this interpretation is supported by the fact that two $2^{\prime}, 3^{\prime}-O$-isopropylidene derivatives of β-ARPP and β-MRPP exhibit N $H \cdots{ }^{\prime}{ }^{\prime}$ intramolecular hydrogen bonding in the solid state. ${ }^{9}$ The crystal structure of ARPP (1a) has been reported by Narayanan and Berman. ${ }^{10}$ Although no $\mathrm{NH} \cdot . . \mathrm{O} 5^{\prime}$ intramolecular hydrogen bonding was observed, the conformation of the sugar ring is highly strained. ${ }^{11}$ To resolve the ambiguity of the strained conformation of 1 a and the possibility of intramolecular hydrogen bonding, we have analyzed the ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, studied the conformational properties by using molecular mechanics and AMPAC (AMI) molecular orbital methods, and correlated the data with single-crystal X-ray diffraction studies. We also synthesized 4-methoxy-8-[(5-deoxy- β-D-ribofuranosyl)amino] pyri-mido[5,4-d]pyrimidine (3d) as a reference compound in which the possibility of $\mathrm{N} H \cdots 5^{\prime}$ hydrogen bonding does not exist.

Experimental Section

Chemistry. The nucleosides $\mathbf{1}$ and $\mathbf{2}$ were synthesized and reported previously from our laboratory. ${ }^{1}$ Compound 3 d was prepared as described below.
(8) Ghose, A. K.; Viswanadhan, V. N.; Sanghvi, Y. S.; Nord. L. D.; Willis, R. C.; Revankar, G. R.; Robins, R. K. Proc. Natl. Acad. Sci. U.S.A. 1989, 86.8242
(9) Larson, S. B.; Sanghvi, Y. S.; Revankar, G. R.; Robins, R. K. Acta Crystallogr. 1989, C45, 1194
(10) Narayanan, P.; Berman, H. M. Carbohydr. Res. 1975, 44. 169.
(11) Altona. C. A.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94, 8205.

4-Methoxy-8-[(5-deoxy- β-D-ribofuranosyl)amino]pyrimido $[5,4-\alpha]$]pyrimidine (3d). Rydon reagent ${ }^{12}$ ($3 \mathrm{~g}, 6.56 \mathrm{mmol}$) was added to a solution of 4-methoxy-8-[(2,3-O-isopropylidene- β-D-ribofuranosyl)amino]-2,6dichloropyrimido[$5,4-d$] pyrimidine ${ }^{1}$ ($3 \mathrm{a}, 2.2 \mathrm{~g}, 5.26 \mathrm{mmol}$) in dry DMF (60 mL) under an argon atmosphere, and the resultant solution was stirred for 1 h at room temperature with the exclusion of moisture. Methanol (1 mL) was added and the reaction mixture stirred for an additional 10 min . The solvent was removed under reduced pressure and the residue dissolved in EtOAc (150 mL). The organic phase was washed with $1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL), followed by water (100 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residual crude 4 -methoxy-8-[(5-deoxy-5-iodo-2,3- O-isopropylidene- β-Dribofuranosyl) amino]-2,6-dichloropyrimido[5,4-d]pyrimidine (3b) was hydrogenated by using $\mathrm{Pd} / \mathrm{C}(10 \%, 1 \mathrm{~g})$ and $\mathrm{NaOAc}(1.31 \mathrm{~g}, 16 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ at 50 psi in a Parr hydrogenator for 24 h . The catalyst was removed by filtration through a Celite pad and washed with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. The combined filtrates were evaporated, and the residue was purified on a silica gel column ($2.5 \times 40 \mathrm{~cm}$) with hexanes $/ E t O A c(7: 3 \mathrm{v} / \mathrm{v}$) as the eluent to provide 0.59 g of 4 -methoxy- $8-$ [(5-deoxy-2,3- O-isopropylidene- β-D-ribofuranosyl)amino] pyrimido[5,4d] pyrimidine (3c): $\mathrm{mp} 65^{\circ} \mathrm{C}$ (foams); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CS}^{\prime} H_{3}\right), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{3}\right), 4.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4^{\prime} H\right), 4.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3^{\prime} H\right), 4.83(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\prime} H\right), 5.91\left(\mathrm{~d}\right.$ of d, $\left.1 \mathrm{H}, \mathrm{Cl}{ }^{\prime} H\right), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{~N} H), 8.68$ and $8.75(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 2 \mathrm{H}$ and C 6 H$)$. In the final deisopropylidenation step, compound $3 \mathrm{c}(0.50 \mathrm{~g})$ was stirred in a mixture of trifluoroacetic acid $/ \mathrm{H}_{2} \mathrm{O}$ ($3 \mathrm{~mL} ; 9: 1 \mathrm{v} / \mathrm{v}$) at room temperature for 30 min . The mixture was diluted with water (25 mL) and evaporated with EtOH $(3 \times 50 \mathrm{~mL})$, followed by toluene (50 mL). The white residue was suspended in acetone (5 mL), warmed to dissolve, and cooled to furnish 0.30 g of the title compound 3d: mp $198^{\circ} \mathrm{C}$ dec; UV $\lambda_{\text {max }} \mathrm{nm}\left(\epsilon \times 10^{-3}\right)$ at $\mathrm{pH} \mathrm{1}$, (16.8), 310 (19.9), and 324 (14.0), at pH 7, 283 (13.4), 297 (sh, 11.9), 309 (11.8), and 324 (8.1), at pH 11, 283 (13.5), 297 (sh, 11.9), 309 (11.8), and 325 (8.1): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.19(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}$, $\mathrm{C}^{\prime} \mathrm{H}_{3}$), 3.75 (m, $2 \mathrm{H}, \mathrm{C} 3^{\prime} \mathrm{H}$ and $\mathrm{C}^{\prime} \mathrm{H}$), 4.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}$), 4.27 (m, $1 \mathrm{H}, \mathrm{C} 2^{\prime} H$), 4.90 and $5.05\left(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{C}^{\prime} \mathrm{OH}\right.$ and $\mathrm{C}^{\prime} \mathrm{OH}$), 5.77 (d of $\mathrm{d}, 1 \mathrm{H}, \mathrm{Cl}^{\prime} H$), 8.59 and $8.83(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 2 H$ and $\mathrm{C} 6 H$), 8.93 (d, 1 H , $J=9.3 \mathrm{~Hz}, \mathrm{~N} H$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}: \mathrm{C}, 49.14 ; \mathrm{H}, 5.15 ; \mathrm{N}$, 23.88. Found: C, 48.99; H, 4.90; N, 23.64.

Single-Crystal X-ray Diffraction Studies. 4-Methoxy-8-[(β-D-ribo-furanosyl)aminolpyrimido[5,4-d]pyrimidine (MRPP, 1b) and its α anomer (2b) were crystallized from a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solution by slow evaporation; crystals of $\mathbf{1 b}$ grew as very thin plates and crystals of $\mathbf{2 b}$ grew as needles. Table I summarizes data collection and refinement of 1b and $\mathbf{2 b}$.

Initial models containing all non-hydrogen atoms including the water of solvation were obtained for both structures with the direct methods program SHELXS86: ${ }^{13}$ all hydrogen atom positions were obtained from difference maps (1b, peaks of $0.32-0.89 \mathrm{e} / \AA^{3}$ at $R=0.056 ; 2 \mathrm{~b}$, peaks of $0.29-0.82 \mathrm{e} / \AA^{3}$ at $R=0.059$). Refinement of all possible parameters (anisotropic treatment of non-hydrogen atoms and isotropic treatment of hydrogen atoms) for each structure was accomplished with the fullmatrix least-squares refinement program SHELX76. ${ }^{14}$ Scattering factors and anomalous-dispersion corrections for non-hydrogen atoms were taken from International Tables for X-ray Crystallography, ${ }^{15}$ and those for hydrogen atoms were from Stewart et al. ${ }^{16}$ Data reduction was effected with the SDP-Plus system; ${ }^{17}$ Figures $2-4$ were drawn with ORTEPII. ${ }^{18}$ Least-squares planes were calculated with the program planes. ${ }^{19}$
${ }^{1} \mathrm{H}$ NMR Study. (i) Temperature-dependent spectra: Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ at 300 MHz with an IBM NR/ 300 spectrometer. The chemical shift values are expressed in δ values (parts per million) relative to tetramethylsilane as an internal standard. The signals are described as s (singlet), d
(12) Verheyden, J. P. H.: Moffatt, J. G. J. Org. Chem. 1970, 35, 2319. (13) Sheldrick, G. M. SHELXS86, A Crystallographic Computing Package; University of Göttingen: Göttingen, Federal Republic of Germany, 1986.
(14) Sheldrick, G. M. SHELX76, A Crystallographic Computing Package; University of Cambridge: Cambridge, England, 1976.
(15) International Tables for X-ray Crystallography: Kynoch Press: Birmingham, England, 1974; Vol. 4 (present distributor Kluwer Academic Publishers: Dordrecht, The Netherlands).
(16) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175.
(17) Frenz, B. A. Enraf-Nonius SDP-Plus Structure Determination Package, Version 3.0; Enraf-Nonius: Delft, The Netherlands, 1985.
(18) Johnson, C. K. ortepli: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, Third Revision. Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, March 1976.
(19) Cordes, A. W. Personal communication, 1983.

Table I. Crystallographic Summary for $\mathbf{1 b}$ and 2b

	1b	2b
	A. Crystal Data ${ }^{\text {a }}$	
formula	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
formula wt	327.30	327.30
crystal system	monoclinic	monoclinic
space group	C2	12
a, \AA	13.309 (3)	14.543 (2)
b, \AA	8.211 (2)	4.7405 (13)
c, \AA A	14.025 (5)	21.355 (7)
β, deg	112.37 (3)	95.041 (14)
V, \AA^{3}	1417.5 (7)	1466.5 (7)
Z	4	4
$T, \mathrm{~K}$	295	295
$D_{x}, \mathrm{~g} \mathrm{~cm}^{-3}$	1.534	1.482
F_{000}	688	688
$\mu(\mathrm{Cu} \mathrm{K} \alpha), \mathrm{cm}^{-1}$	10.187	9.846

B. Data Collection ${ }^{b}$
mode
scan range
background
scan rate, deg min^{-1} 2θ range, deg
exposure time, h
stability cor range on I
range in $h k l$, min
range in $h k l$, max total reflens measd, unique
$R_{\text {int }}$
crystal dimensions, mm
crystal vol, mm^{3}
crystal faces
transmission factor range
$\omega-2 \theta$ scan
$0.80+0.15 \tan \theta$
scan 0.25 times scan range
before and after scan

$2.1-16.5$	$2.1-16.5$
$3-152$	$3-152$
44.5	33.3
$1.000-1.000$	$0.996-1.000$
$0,-10,-17$	$0,-5,-26$
$16,10,17$	$18,5,26$
3082,2931	3144,2979
0.021	0.018
$0.485 \times 0.29 \times 0.01$	$0.40 \times 0.12 \times 0.06$
0.00139	0.00281
$\{001\} ;(100) ;(3,4, I) ;$	$\{101\} ;\{010\} ;\{001\}$
$(\overline{3}, 4,1) ;(5,1, \overline{1}) ;(5,1,1)$	
$0.688-0.990$	$0.584-0.945$

C. Structure Refinement ${ }^{\boldsymbol{c}}$
reflens used, m ($F \geq$ $4 \sigma_{F}$)
no. of variables, n
extinction parameter
goodness of fit, S
$R, w R$
R for all data
\max, av Δ / σ
$\max , \min \rho$ in ΔF map
2369
276
$3.7(5) \times 10^{-7}$
1.373
0.0346, 0.0444
0.0607
$0.0015,0.0003$
$0.41,-0.30$
$0.584-0.945$
(e \AA^{-3})
(doublet), t (triplet), q (quartet), and m (multiplet). For the tempera-ture-dependent spectral studies, the spectra were recorded at intervals of $10^{\circ} \mathrm{C}$. (ii) Calculation of coupling constants: Calculation of the vicinal $\mathrm{H}-\mathrm{H}$ coupling constant in an ethane-like system from the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ dihedral angle was first suggested by Karplus. ${ }^{20}$ Although the original Karplus equation was derived strictly for ethane, subsequently it was reparametrized to apply to a specific class of compounds, like nucleotides ${ }^{21}$ or peptides, ${ }^{22}$ or to generalize the substituent effect. ${ }^{23.24}$ Later, Remin ${ }^{25.26}$ utilized Haasnoot's ${ }^{24}$ equation to study the conformational
(20) Karplus, M. J. Am. Chem. Soc. 1963, 85, 2870.
(21) Altona, C. A.; Sundaralingam, M. J. Am. Chem. Soc. 1973, 95, 2333.
(22) Kopple, K. D.; Wiley, G. R.; Tauke, R. Biopolymers 1973, 12, 627.
(23) Abraham, R. J.; Pachler, K. G. R. Mol. Phys. 1964, 7, 165.
(24) Haasnoot. C. A. G.; De Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, 2783.
(25) Remin, M. J. Biomol. Struct. Dyn. 1984, 2, 211.
(26) Remin, M. J. Biomol. Struct. Dyn. 1988, 6, 367.

1a

2a

2b

1b

Figure 1. General structure, atom numbering, and identification of the dihedral angles of the compounds studied here.
properties of the nucleic acid components. In the present study we used Haasnoot's equation
$J_{\mathrm{HH}}=P_{1} \cos ^{2} \phi+P_{2} \cos \phi+P_{3}+$

$$
\sum \Delta \chi_{i}\left[P_{4}+P_{5} \cos ^{2}\left(\xi_{i} \phi+P_{6}\left|\Delta \chi_{i}\right|\right)\right]
$$

to evaluate the theoretical coupling constants in various conformations based on the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ torsion angle ϕ. The effect of the group substituents was determined by the equation

$$
\begin{equation*}
\Delta x^{\text {group }}=\Delta x^{\alpha}-P_{7} \sum \Delta x^{\beta} \tag{2}
\end{equation*}
$$

where α is the atom directly attached to the ethane carbon and β are the atoms attached to the α atom. In eqs 1 and 2 , the P 's are the various parametrized constants, ${ }^{24} \Delta \chi_{i}$ is the difference in the electronegativity between the i th substituent and hydrogen, and ξ_{ξ} is the sign of the i th substituent. The parameters for the four substituted ethane-like system were used throughout this work. ${ }^{24}$

Molecular Mechanics (MM) Conformational Analysis. The fixed valence structure conformational analysis program CONFOR ${ }^{27,28}$ was used for the conformational calculations. This program uses the 1985 MM2 parameters ${ }^{29}$ with some additional torsional parameters obtained from the literature or from analogous bonds. The additional torsional parameters are given in the supplementary material.

Molecular Orbital (MO) Calculations. The AMPAC (AM1) ${ }^{30,31}$ molecular orbital package was used for partial and complete geometry

[^1]

Figure 2. ORTEP drawings of molecules $\mathbf{1 b}$ (a) and $\mathbf{2 b}$ (b).
optimizations, starting from various conformations of interest, to evaluate the local minima.

Results and Discussion

X-ray Study. The molecular conformations and atom labeling for compounds $\mathbf{1 b}$ and $\mathbf{2 b}$ are shown in Figure 2. The atomic coordinates are listed in Table II; bond lengths and bond angles are listed in Table III.

The Aglycon Moiety. As observed in ARPP (1a), ${ }^{10}$ each of the two fused pyrimidine rings in each structure is essentially planar (rms deviation less than $0.020 \AA$ for each ring); the dihedral angles between the planes are $2.55(10)^{\circ}$ for $\mathbf{1 b}$ and $1.09(9)^{\circ}$ for $\mathbf{2 b}$ compared to 0.59° for $1 \mathbf{1 a}$. The pyrimido [$5,4-d$] pyrimidine ring systems in 1b, 2b, and 1a have bonding patterns of alternating long and short bonds with approximate 2 -fold symmetry as diagrammed in Figure 1. The corresponding bond lengths and bond angles in $\mathbf{1 b}$ and $\mathbf{2 b}$ are equivalent within experimental error; the lengths of the bonds in 1a, equivalent to bonds $\mathrm{C} 4-\mathrm{ClO}$ and C6-N7 in 1b and $\mathbf{2 b}$, are significantly longer (1.455 and 1.376 \AA, respectively). The methoxy group is slightly twisted out of the pyrimidopyrimidine plane $\left[9.5(2)^{\circ}\right.$ for $\mathbf{1 b}$ and $3.02(11)^{\circ}$ for 2b] with the methyl group trans to Cl 10 .

The Glycosyl Linkage. The C8-N13 bonds in 1b and 2b are conjugated with the heterocycle; these bonds are even shorter than those observed in 1a [1.365 (4) \AA]. However, the $\mathrm{Cl}^{\prime}-\mathrm{N} 13$ glycosyl bonds in 1b are about the same as those in 1a [1.431 (4) $\AA]$. In Table IV the torsion angles $\chi_{\mathrm{CN}}, \chi^{\prime}{ }_{\mathrm{CN}}$, and $\chi^{\prime \prime}{ }_{\mathrm{CN}}$ that characterize the conformation of the glycosyl bridge are given. The values are of approximately the same magnitude but opposite sign for $\mathbf{1 b}$ and 2b. Nucleosides 1b and 1a have torsion angles that are within 23° (rms deviation of χ, χ^{\prime}, and $\chi^{\prime \prime}$ is $\sim 19^{\circ}$) of each other.

The Glycon Moiety. Nucleoside 1b was confirmed to be the β-anomer and 2 b was confirmed to be the α-anomer. The conformational parameters ${ }^{11}$ of the ribose moieties are given in Table IV. The conformations in 1b and $\mathbf{2 b}$ are nearly identical despite the difference in anomeric configuration but are very distinct from the unusual ribose conformation found in 1a. ${ }^{10}$ Bond lengths and bond angles are not significantly different between the two anomers of MRPP. However, the orientations of the C5'-O5' side chain do differ; the β-anomer has the gauche-gauche ($\mathrm{g}+$) orientation

Table II. Positional and Equivalent Isotropic Thermal Parameters for All the Atoms in 1b and $\mathbf{2 b}$

atom	x / a	y / b	z / c	$U_{\text {eq }}{ }^{\text {a }}$	atom	x / a	y / b	z / c	$U_{\text {ca }}{ }^{\text {a }}$
1b									
N1	0.3139 (2)	0.7	0.38892 (14)	0.0351 (6)	O4'	0.35561 (12)	0.1966 (3)	0.22962 (11)	0.0398 (6)
C2	0.3416 (2)	0.8366 (4)	0.4407 (2)	0.0381 (8)	O5'	0.4504 (2)	0.4557 (3)	0.15131 (15)	0.0459 (7)
N3	0.3946 (2)	0.8558 (3)	0.5437 (2)	0.0367 (7)	OW	0.7025 (2)	0.1788 (4)	0.1637 (2)	0.0539 (8)
C4	0.4209 (2)	0.7225 (4)	0.5993 (2)	0.0312 (7)	H2	0.323 (2)	0.940 (4)	0.406 (2)	0.042 (7)
N5	0.4289 (2)	0.4268 (3)	0.61389 (14)	0.0347 (6)	H6	0.428 (2)	0.193 (4)	0.599 (2)	0.033 (6)
C6	0.4049 (2)	0.2903 (4)	0.5607 (2)	0.0364 (8)	H12A	0.553 (3)	0.931 (5)	0.707 (3)	0.070 (10)
N7	0.3534 (2)	0.2695 (3)	0.45801 (15)	0.0349 (6)	H12B	0.548 (3)	0.860 (5)	0.814 (3)	0.067 (10)
C8	0.3218 (2)	0.4024 (3)	0.3997 (2)	0.0299 (7)	H12C	0.441 (3)	0.960 (5)	0.729 (3)	0.065 (10)
C9	0.3429 (2)	0.5613 (4)	0.4474 (2)	0.0296 (6)	H13	0.259 (3)	0.488 (5)	0.257 (3)	0.073 (11)
C10	0.3966 (2)	0.5638 (4)	0.5542 (2)	0.0296 (6)	H1'	0.246 (2)	0.147 (4)	0.292 (2)	0.041 (7)
011	0.47351 (14)	0.7299 (3)	0.70080 (12)	0.0408 (6)	H2'	0.109 (2)	0.306 (4)	0.131 (2)	0.039 (7)
C12	0.5108 (3)	0.8894 (4)	0.7426 (2)	0.0487 (10)	H3'	0.240 (2)	0.417 (4)	0.076 (2)	0.034 (6)
N13	0.2694 (2)	0.3889 (3)	0.29725 (14)	0.0358 (7)	H4'	0.336 (2)	0.099 (4)	0.096 (2)	0.046 (8)
Cl^{\prime}	0.2576 (2)	0.2349 (4)	0.2442 (2)	0.0342 (7)	H5'A	0.507 (3)	0.233 (4)	0.145 (2)	0.060 (9)
C2 ${ }^{\prime}$	0.1675 (2)	0.2379 (4)	0.1367 (2)	0.0354 (7)	H5'B	0.426 (3)	0.301 (5)	0.038 (3)	0.059 (9)
C3'	0.2296 (2)	0.2919 (4)	0.0707 (2)	0.0346 (7)	HO^{\prime}	0.072 (3)	0.047 (5)	0.122 (3)	0.075 (11)
C4 ${ }^{\prime}$	0.3392 (2)	0.2074 (4)	0.1222 (2)	0.0353 (7)	HO^{\prime}	0.131 (4)	0.156 (6)	-0.041 (3)	0.094 (14)
$\mathrm{C5}^{\prime}$	0.4354 (2)	0.2924 (4)	0.1121 (2)	0.0448 (9)	HOS^{\prime}	0.482 (4)	0.449 (6)	0.215 (4)	0.10 (2)
O2'	0.1297 (2)	0.0773 (3)	0.10434 (14)	0.0494 (7)	HWA	0.739 (3)	0.209 (5)	0.126 (3)	0.075 (11)
$\mathrm{O3}^{\prime}$	0.1765 (2)	0.2495 (3)	-0.03554 (12)	0.0462 (6)	HWB	0.727 (3)	0.233 (5)	0.220 (3)	0.063 (10)
2b									
N1	0.47038 (12)	0.75	0.29023 (8)	0.0410 (6)	O4'	0.27485 (10)	0.2955 (7)	0.43367 (7)	0.0583 (6)
C2	0.52748 (15)	0.9292 (8)	0.26761 (10)	0.0442 (7)	O5'	0.17254 (11)	0.4180 (7)	0.54350 (8)	0.0577 (6)
N3	0.61839 (12)	0.9700 (7)	0.28631 (8)	0.0428 (6)	OW	0.96978 (13)	0.5600 (7)	0.38828 (11)	0.0640 (7)
C4	0.65335 (13)	0.8127 (7)	0.33269 (9)	0.0364 (6)	H2	0.502 (2)	1.037 (6)	0.2320 (11)	0.040 (6)
N5	0.63689 (10)	0.4563 (6)	0.41329 (8)	0.0396 (5)	H6	0.605 (2)	0.165 (6)	0.4715 (12)	0.044 (7)
C6	0.57871 (14)	0.2781 (7)	0.43686 (10)	0.0431 (7)	H12A	0.865 (2)	0.990 (7)	0.3440 (13)	0.054 (8)
N7	0.48921 (11)	0.2351 (7)	0.41773 (9)	0.0431 (6)	H12B	0.777 (2)	1.226 (10)	0.320 (2)	0.074 (10)
C8	0.45274 (13)	0.3853 (7)	0.36936 (9)	0.0361 (6)	H12C	0.803 (2)	0.942 (8)	0.278 (2)	0.075 (10)
C9	0.50746 (13)	0.5892 (7)	0.33943 (9)	0.0343 (6)	H13	0.344 (2)	0.452 (7)	0.3210 (13)	0.050 (8)
C10	0.59946 (12)	0.6112 (7)	0.36385 (9)	0.0342 (6)	H1'	0.340 (2)	-0.025 (6)	0.3921 (12)	0.046 (7)
011	0.74207 (9)	0.8292 (7)	0.35351 (7)	0.0453 (5)	H2'	0.225 (2)	-0.092 (7)	0.3090 (13)	0.054 (8)
C 12	0.7990 (2)	1.0226 (8)	0.32129 (13)	0.0523 (8)	H3'	0.170 (2)	-0.165 (6)	0.4097 (11)	0.041 (6)
N13	0.36381 (11)	0.3446 (7)	0.34821 (9)	0.0410 (6)	H4'	0.145 (2)	0.431 (7)	0.4256 (13)	0.049 (7)
Cl^{\prime}	0.30518 (14)	0.1586 (7)	0.37922 (10)	0.0412 (7)	H5'A	0.203 (2)	0.015 (8)	0.5162 (15)	0.069 (9)
$\mathrm{C} 2^{\prime}$	0.21765 (14)	0.0809 (7)	0.33791 (10)	0.0404 (6)	H5'B	0.094 (2)	0.106 (8)	0.5052 (14)	0.064 (9)
C3'	0.15199 (13)	0.0217 (7)	0.38828 (10)	0.0369 (6)	HO^{\prime}	0.139 (2)	0.280 (8)	0.2775 (14)	0.065 (9)
$\mathrm{C4}^{\prime}$	0.17834 (13)	0.2504 (7)	0.43700 (10)	0.0356 (6)	HO^{\prime}	0.024 (2)	-0.113 (9)	0.374 (2)	0.075 (10)
CS^{\prime}	0.1604 (2)	0.1794 (8)	0.50346 (12)	0.0488 (7)	HO5'	0.235 (2)	0.433 (8)	0.5532 (14)	0.062 (8)
O2'	0.19005 (10)	0.3184 (6)	0.30054 (7)	0.0482 (5)	HWA	0.919 (3)	0.533 (8)	0.414 (2)	0.075 (10)
O3'	0.05776 (10)	0.0376 (6)	0.36482 (8)	0.0464 (5)	HWB	1.002 (3)	0.377 (13)	0.390 (2)	0.109 (15)

${ }^{6}$ For non-hydrogen atoms, U is $U_{\text {eq }}=1 / 3 \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} A_{i j}$, where $A_{i j}$ is the dot product of the i th and j th direct-space unit-cell vectors.

(a)

(b)

Figure 3. Crystal packing of 1b. (a) View along the b-axis illustrating the base stacking. (b) View along the a-axis showing the nearly complete overlap of the bases.
and the α-anomer has the gauche-trans (t) orientation.
Packing. The hydrogen bonding in the two structures is detailed in Table V. It should be noted that the $-\mathrm{OCH}_{3}$ group in $\mathbf{1 b}$ has two hydrogen atoms in close contact with ribose oxygens. Nucleoside 1b crystallizes with the pyrimido [5,4- d]pyrimidine base approximately parallel to the $(2,0,-1)$ diffraction plane. However, base-stacking interactions occur mainly in a pairwise fashion as seen in Figure 3a. The nearly complete overlap of the bases in one of these hydrogen-bonded pairs is seen in Figure 3b. We have recently reported ${ }^{32}$ the structure of 1-(2-deoxy- β-D-erythro-pen-

[^2]

Figure 4. Packing diagram of $\mathbf{2 b}$ viewed perpendicular to the pyrimido $[5,4-d$] pyrimidine ring of one molecule.
tofuranosyl)-1 H -pyrazolo[3,4-b]pyridin-4(7H)-one, which also exhibits pairwise, nearly complete base overlap as hydrogen-bonded dimers. In the present case the average interbase distance is 3.40 (3) \AA, compared to $4 \AA$ in the pyrazolo $[3,4-b]$ pyridin- $4(7 \mathrm{H})$-one. Atom $\mathrm{O5}^{\prime}$, which is involved in hydrogen bonding the pair together, is only $-0.017 \AA$ out of the plane of the base of the paired molecule.

Table III. Bond Lengths (\AA) and Bond Angles (deg) in 1b and 2b

1	2	3	1-2, 1b	1-2, 2 b	1-2-3, 1 b	1-2-3, 2b
C2	N1	C9	1.311 (3)	1.310 (3)	115.1 (2)	115.1 (2)
N3	C2	N1	1.353 (3)	1.361 (3)	127.8 (3)	128.0 (2)
C4	N3	C2	1.312 (4)	1.307 (3)	116.8 (3)	116.4 (2)
C10	C4	011	1.431 (4)	1.436 (4)	117.0 (2)	115.9 (2)
C10	C4	N3			122.2 (2)	122.6 (2)
011	C4	N3	1.327 (2)	1.330 (2)	120.8 (3)	121.4 (2)
C6	N5	C10	1.317 (4)	1.326 (4)	113.7 (2)	114.4 (2)
N7	C6	N5	1.350 (3)	1.345 (3)	128.8 (3)	127.9 (2)
C8	N7	C6	1.333 (3)	1.326 (3)	117.7 (2)	117.7 (2)
C9	C8	N13	1.443 (4)	1.437 (4)	120.1 (2)	120.0 (2)
C9	C8	N7			119.7 (2)	120.5 (2)
N13	C8	N7	1.342 (3)	1.346 (2)	120.2 (2)	119.4 (2)
C10	C9	N1	1.394 (3)	1.396 (2)	122.9 (2)	123.0 (2)
C10	C9	C8			116.2 (2)	115.7 (2)
N1	C9	C8	1.370 (3)	1.370 (3)	120.9 (2)	121.3 (2)
C4	C10	N5			120.8 (2)	121.4 (2)
C4	C10	C9			115.2 (2)	114.9 (2)
N5	C10	C9	1.369 (4)	1.360 (3)	123.9 (3)	123.7 (2)
C12	011	C4	1.443 (4)	1.449 (4)	115.9 (2)	117.2 (2)
Cl^{\prime}	N13	C8	1.445 (4)	1.429 (4)	122.3 (2)	121.9 (2)
$\mathrm{C} 2^{\prime}$	Cl^{\prime}	O4'	1.529 (3)	1.529 (3)	106.1 (2)	106.1 (2)
$\mathrm{C} 2^{\prime}$	Cl^{\prime}	N13			112.6 (2)	112.4 (2)
O4'	Cl^{\prime}	N13	1.431 (3)	1.435 (3)	109.9 (2)	109.6 (3)
C3'	C2'	O2'	1.522 (4)	1.526 (3)	106.5 (2)	112.3 (2)
C3'	C2'	C1'			101.6 (2)	100.3 (2)
O2'	C2'	Cl^{\prime}	1.423 (4)	1.417 (4)	110.4 (2)	108.3 (2)
C4'	C3'	O^{\prime}	1.526 (3)	1.528 (4)	112.8 (2)	112.3 (2)
C4'	C3'	C2 ${ }^{\prime}$			102.8 (2)	102.4 (2)
O3'	C3'	C^{\prime}	1.428 (3)	1.419 (2)	113.3 (2)	112.7 (2)
C5 ${ }^{\prime}$	C^{\prime}	O4'	1.512 (4)	1.503 (3)	109.3 (2)	109.5 (2)
C5'	C4'	C3'			115.9 (2)	115.5 (3)
O4'	C4'	C3'	1.440 (3)	1.428 (2)	105.1 (2)	105.1 (2)
O5'	C^{\prime}	C4'	1.434 (4)	1.419 (4)	113.3 (3)	111.6 (3)
Cl^{\prime}	O4'	C4'			110.6 (2)	110.3 (2)

Table IV. Sugar Conformational Parameters in 1b, 2b, and 1a

parameter		1b	2b	$19^{\text {a }}$
Sugar Conformation				
τ_{0}, deg	$\mathrm{C4}^{\prime}-\mathrm{O4}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	11.5 (3)	13.7 (3)	-44.0
τ_{1}, deg	$\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	-30.1 (3)	-32.9 (3)	27.1
τ_{2}, deg	$\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	36.5 (3)	38.9 (3)	1.1
r_{3}, deg	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O}^{\prime}$	-30.7 (3)	-32.2 (3)	-25.4
τ_{4}, deg	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{Cl}{ }^{\prime}$	12.1 (3)	11.7 (3)	43.9
τ_{m}, deg	amplitude of pucker ${ }^{\text {b }}$	36.5	38.9	45.0
P, deg	pseudorotation angle ${ }^{\text {b }}$	0.6	-1.3	88.6
	conformation	$\begin{aligned} & \text { C3'-endo/ } \\ & \mathrm{C} 2^{\prime} \text {-exo } \\ & { }^{3} T_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C} 2^{\prime} \text {-exo/ } \\ & { }_{2} \mathrm{~T}^{3} 3^{\prime} \text {-endo } \end{aligned}$	O4'-endo ${ }^{0} E$
Glycosidic Linkage				
$\chi_{\text {CN }}$, deg	O4'-C1'-N11-H11	82 (3)	-90 (3)	95 (7)
$\chi^{\prime}{ }_{\text {cN }}, \operatorname{deg}$	$\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{N} 11-\mathrm{C} 8$	-79.8 (3)	78.5 (3)	-99.2 (5)
$\chi^{\prime \prime}{ }^{\prime \prime}$, deg	Cl'-N11-C8-N7	-8.4 (4)	4.7 (4)	14.0 (7)
Side-Chain Conformation				
ϕ_{00}, deg	$\mathrm{O} 4^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{O} 5^{\prime}$	-61.2 (3)	71.2 (3)	-174.7
ϕ_{co}. deg	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{O} 5^{\prime}$	57.2 (3)	-170.4 (2)	-58.3

${ }^{a}$ From ref $10 .{ }^{b}$ See ref 11 .
As in 1a, there may be an ramolecular hydrogen-bonding interaction $\mathrm{O}^{\prime} \rightarrow \mathrm{O}^{\prime}$, alth \quad _h it is much weaker in $\mathbf{1 b}$, perhaps because it is bifurcated in an $\mathrm{O3}^{\prime} \rightarrow \mathrm{Os}^{\prime}$ interaction also. All OH and NH hydrogen atoms are involved in hydrogen bonding. The water molecule forms an unusual intramolecualr hydrogenbonded bridge from N13 to N1 resulting in a seven-membered ring (Figure 2).

The hydrogen bonds existing in the crystal structure of $\mathbf{2 b}$ are generally shorter and on the average more linear than those in the β-anomer. All OH groups act as donors. The hydrogen of the bridging NH is involved in an intramolecular interaction with $\mathrm{O} 2^{\prime}$, having a geometry similar to the $\mathrm{O}^{\prime} \boldsymbol{\rightarrow} \boldsymbol{\mathrm { O }} 2^{\prime}$ interaction in 1b. Bases stack along the b direction with an interplanar spacing of $3.33 \AA$. Partial overlap of one pyrimidine ring with the other pyrimidine ring of an adjacent molecule is observed. Heterocycles of 2 -fold related molecules are approximately perpendicular to

Figure 5. Conformational energy of the β-MRPP (一), α-MRPP (---), and 5^{\prime}-deoxy- β-MRPP (---) during the rotation of the $\mathrm{Cl}^{\prime}-\mathrm{N}\left(\omega_{5}\right)$ bond. The rest of the dihedral angles were fixed at the values of their global minimum-energy conformation.
each other. These 2 -fold related molecules again form dimers with reciprocated $\mathrm{O5}^{\prime} \rightarrow$ N5 hydrogen bonds as in 1b, but the heterocycles are perpendicular in $\mathbf{2 b}$ rather than parallel as in $\mathbf{1 b}$.

Molecular Mechanics Conformational Analysis. The initial valence structures of these molecules were generated from our crystallographic fragment library, containing the 2^{\prime}-endo $/ 3^{\prime}$-exo (type S) and 2^{\prime}-exo $/ 3^{\prime}$-endo (type N) ribose rings ${ }^{33}$ and the pyrimido $[5,4-d]$ pyrimidine rings. ${ }^{9}$ The minimum energy conformations of 1 and 2 , as obtained from the pattern and combinatorial searches, are given in Table VI. During the pattern search minimization, all rotatable dihedral angles (see Table VI for identification of these angles) were rotated from 0° to 360° at intervals of 10°. For the combinatorial search only four dihedral angles ($\omega_{1}, \omega_{2}, \omega_{5}$, and ω_{6}) were rotated; the latter three were rotated from 0° to 360° at intervals of 20°, while ω_{1} was rotated from 60° to 300° at intervals of 120°. The β-anomers 1 a and 1b showed remarkably similar conformational behavior. Not only were their minimum energy conformations almost identical (see Table VI), but also the energy profiles of the rotation of the two dihedral angles around the exocyclic $\mathrm{N} H$ were almost identical near the low-energy region. The MM calculations resulted in two significant observations: (1) in the β-anomer 1b with regular \mathbf{S} or N puckered ribofuranosyl moieties, O^{\prime} and the exocyclic $\mathrm{N} H$ proton, even at their closest distance (3.63 and $3.20 \AA$, respectively), are too far apart to form a hydrogen bond; and (2) the β-anomers show two energy minima with respect to rotation about the $\mathrm{Cl}^{\prime}-\mathrm{N}$ bond, whereas the α-anomers show only one minimum (see Figure 5).
${ }^{1}$ H NMR Study and AM1 Molecular Orbital Calculations. The ${ }^{1} \mathrm{H}$ NMR spectra of the α - and β-anomers of ARPP and MRPP at 297 K exhibit considerable differences in the chemical shift of the $\mathrm{N} H$ protons ($\Delta \delta=0.30$ and 0.32 ppm , respectively). In each case, the $\mathrm{N} H$ signal of the β-anomer is downfield with respect
(33) Low, J. N. Acta Crystallogr. 1983, C39, 796.

Table V. Hydrogen Bonding and Close Contacts in 1b and 2b

D	H	A	symmetry of A relative to D	$d(\mathrm{D} \cdot \cdots \mathrm{A}), \AA$ A	$d(\mathrm{H} \cdots \mathrm{A}), \AA$	$\angle(D-H \cdots A)$, deg
Ib						
C12	H12A	O4'	$1.0-x, 1.0+y, 1.0-z$	3.026 (4)	2.49 (4)	116 (3)
C12	H12B	O3'	$0.5+x, 0.5+y, 1.0+z$	3.262 (4)	2.34 (4)	161 (3)
N13	H13	OW	$x-0.5,0.5+y, z$	2.950 (4)	1.99 (4)	168 (3)
O2'	HO2 ${ }^{\prime}$	O5'	$x-0.5, y-0.5, z$	2.885 (3)	1.97 (4)	173 (4)
O3'	HO^{\prime}	O2'	x, y, z	2.678 (3)	2.15 (4)	113 (3)
O3'	HO^{\prime}	Os'	0.5-x, y-0.5, -z	3.038 (3)	2.23 (5)	140 (4)
O5'	HO5'	N5	$1.0-x, y, 1.0-z$	3.076 (3)	2.24 (5)	178 (5)
OW	HWA	O3'	$1.0-x, y,-z$	2.892 (3)	2.02 (4)	173 (4)
OW	HWB	N1	$0.5+x, y-0.5, z$	2.940 (2)	2.22 (4)	141 (3)
2 b						
N13	H13	O2'	x, y, z	2.643 (2)	2.33 (3)	104 (2)
O2'	HO^{\prime}	N1	0.5-x, y-0.5, 0.5-z	2.918 (2)	2.06 (3)	168 (3)
O3'	HO^{\prime}	OW	$x-1.0, y-1.0, z$	2.670 (3)	1.78 (4)	172 (4)
O5'	HO5'	N5	$1.0-x, y, 1.0-z$	2.849 (2)	1.95 (3)	171 (3)
OW	HWA	O5'	$1.0-x, y, 1.0-z$	2.719 (3)	1.77 (4)	170 (4)
OW	HWB	O3'	$1.0+x, y, z$	2.852 (4)	1.90 (5)	161 (4)

Table VI. Minimum-Energy Conformation of the Molecules As Obtained from Molecular Mechanics Calculations ${ }^{a}$

	angle, deg								
compd	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{6}	ω_{7}	ω_{8}	
1a	50	60	50	290	170	160	340		
2a	50	60	50	290	180	170	340		
1b	50	60	50	290	170	160	10	60	
2b	50	60	50	290	180	170	10	60	
3d		60	50	290	170	190	100	60	

${ }^{a} \omega_{1}=\mathrm{H}-\mathrm{O} 5^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}, \omega_{2}=\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}, \omega_{3}=\mathrm{H}-\mathrm{O} 3^{\prime}-\mathrm{C} 3^{\prime}-$ $\mathrm{C}^{\prime}{ }^{\prime}, \omega_{4}=\mathrm{H}-\mathrm{O}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}, \omega_{5}=\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{N} 12-\mathrm{C} 8$ (for 1a and 2a) or $\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{N} 13-\mathrm{C} 8$ (for $\mathbf{1 b}$ and $\mathbf{2 b}$), $\omega_{6}=\mathrm{H}-\mathrm{N}-\mathrm{C} 8-\mathrm{N} 7, \omega_{7}=\mathrm{N} 3-\mathrm{C} 4-$ $\mathrm{N} 11-\mathrm{H}(\mathrm{C})$ or $\mathrm{N} 3-\mathrm{C} 4-\mathrm{O} 11-\mathrm{C}$, and $\omega_{8}=\mathrm{C} 4-\mathrm{O} 11-\mathrm{Cl} 2-\mathrm{H}$. For atom labels, see Figure 1.
to that of the α-anomer (8.40 vs 8.1 ppm in ARPP and 8.71 vs 8.39 ppm in MRPP). It has been shown by X-ray analysis, ${ }^{1.9}$ and corroborated by low-field $\mathrm{N} H$ proton resonance, ${ }^{1}$ that $\mathrm{NH} \ldots \mathrm{O}^{\prime}$ intramolecular hydrogen bonding exists in the $2^{\prime}, 3^{\prime}-O$-iso-propylidene-blocked precursors of 1. Thus, it was postulated that NH...O5' intramolecular hydrogen bonding was present in the deblocked β-anomers (1) studied here. ${ }^{1}$

To study this possibility, a variable-temperature ${ }^{1} \mathrm{H}$ NMR experiment ($297 \rightarrow 360 \mathrm{~K}$) using $\mathrm{Me}_{2} \mathrm{SO}-d_{6}{ }^{34}$ as solvent was initiated for nucleosides 1 and 2. As the samples were heated and then cooled, compounds 1 la and 1 lb exhibited a smooth and reversible shift of the $\mathrm{N} H$ resonance signal (1a, $8.40 \leftrightarrow 7.90 \mathrm{ppm}$; $\mathbf{1 b}, 8.71 \leftrightarrow 8.17 \mathrm{ppm}$); the resonances of the NH protons of the α-anomers $2 \mathbf{a}$ and $\mathbf{2 b}$, however, did not change in this temperature range. Except for the signals of the $\mathrm{C} 4 \mathrm{~N} \mathrm{H}_{2}$ protons in the ARPP anomers, all other proton signals remained relatively unaffected. The $\mathrm{C} 4 \mathrm{NH}_{2}$ signals appeared as two broad singlets at 297 K (1a, 7.77 and $7.92 \mathrm{ppm} ; \mathbf{2 a}, 7.78$ and 8.0 ppm), indicating a difference in the environments of the two protons. At 360 K , both sets of signals collapsed to broad singlets (1a, $7.42 \mathrm{ppm} ; 2 \mathrm{a}, 8.10 \mathrm{ppm}$). Since crystallographic evidence presented here and elsewhere ${ }^{1,9,10}$ suggests that the $\mathrm{N} H \cdots \mathrm{~N} 1$ spatial relationship is fairly constant (i.e., $\omega_{6} \sim 180^{\circ}$), these variable-temperature NMR studies corroborate the hypothesis that the low-field signal of the $\mathrm{N} H$ proton in the β-anomers 1 results from $\mathrm{NH} \cdots \mathrm{O}^{\prime}$ hydrogen bonding.

However, the solid-state structures of $1 a^{10}$ and $\mathbf{1 b}$ (presented above) show no such hydrogen bonding. Furthermore, the MM studies of the structures, employing regular \mathbf{S} or N puckered ribofuranosyl rings, suggest that the postulated hydrogen bonds are virtually impossible in the structures. Thus, in an effort to resolve this discrepancy, we did exhaustive AMPAC (AM1) MO calculations. The structures of 1 and 2 , obtained from the various

[^3]Table VII. AM1 Optimized Structures ${ }^{\boldsymbol{a}}$ of Nucleosides 1a, 1b, 2a and 2 b

	angle, deg									
compd	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{6}	ω_{7}	ω_{8}		
1a	72.9	76.2	65.9	-59.7	162.8	194.7	0.0			
2a	60.7	59.7	76.0	-58.4	201.3	163.9	-2.3			
1b	78.2	72.3	55.7	-57.6	167.6	193.5	-0.2	61.4		
2b	60.1	61.2	84.5	-62.7	182.8	160.9	-0.2	179.9		

${ }^{\circ}$ The starting structure in the optimization procedure was the molecular mechanics minimum-energy conformation as given in Table VI. For identification of the dihedral angles, see the footnote of Table VI.
crystallographic and MM energy minimization studies, were subjected to AM1 MO optimization to study their relative energies. Both partial and complete geometry optimizations were performed. The former, in which all non-hydrogen dihedral angles were fixed, resulted in a structure that was optimized with respect to bond distances and angles without change in conformation. The latter optimized the complete structure by varying all internal coordinates, resulting in optimized bond distances and angles and a change in conformation. Some of the important results of these studies are summarized in Tables VII and VIII.

When the dihedral angles ω_{1} and ω_{5} in both the S and N puckered structures of 1 were properly oriented to form an NH.--Os' hydrogen bond, the $\mathrm{H} \cdot \ldots \mathrm{O}$ distances were 3.63 and 3.20 \AA, respectively. As shown in Table VIII, the complete geometry optimization decreased these distances considerably, placing these groups in a juxtaposition to form relatively weak hydrogen bonds. Other changes in these optimized structures involved the HI^{\prime} $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$ and $\mathrm{H} 3^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{H} 4^{\prime}$ dihedral angles as well as a flattening of the sugar rings. In terms of AMPAC (AM1) MO energy, the best structure was obtained from the geometry optimization of the MM minimum-energy conformation. The structure optimized from the crystal structure of $\mathbf{1 b}$ presented above and the structure of 1a generated from the crystal structure of the $2^{\prime}, 3^{\prime}-O$-isopropylidene-blocked nucleosides were energetically very close to the MM-MO-optimized structures. The energy of the structure of 1 la reported by Narayanan and Berman ${ }^{10}$ had considerably higher energy. The partially optimized X-ray structure of 1a had relatively high energy ($-93.466 \mathrm{kcal} / \mathrm{mol}$) and complete optimization resulted in a nearly planar furanose ring, having energy higher than the MM-MO geometry-optimized structure. Thus, the MO calculations demonstrate the tendency of the β-anomers to form the hydrogen bond if the sugar ring is flattened.

Therefore, we studied the sugar ring conformation, utilizing the $\mathrm{H} 1^{\prime}-\mathrm{H} 2^{\prime}$ and $\mathrm{H}^{\prime}-\mathrm{H} 4^{\prime}$ coupling constants after the manner of Remin. ${ }^{25,26}$ The observed and calculated values of the coupling constants of the various conformations are given in Table IX. The calculated $\mathrm{H} 1^{\prime}-\mathrm{H} 2^{\prime}$ and $\mathrm{H}^{\prime}-\mathrm{H} 4^{\prime}$ coupling constants for the hydrogen-bonded conformations are generally very low and inconsistent with the observed coupling constants, whose values

Table VIII. Certain Aspects of the AM1 Molecular Orbital Calculation on Different Conformations of ARPP and MRPP

$\begin{gathered} \text { compd } \\ \text { (source, }{ }^{a} \text { optimization }{ }^{b} \text {) } \end{gathered}$	$\begin{aligned} & \text { energy, } \\ & \mathrm{kcal} / \mathrm{mol} \end{aligned}$	important dihedral angles ${ }^{\text {c }}$				important distances	
		τ_{1}	τ_{2}	τ_{3}	τ_{4}	O5'-HN	N1-HN
1b (X, P)	-131.18	93.6	203.7	162.2	172.4	3.204	2.497
1b (X, C)	-134.47	101.6	223.2	161.2	164.1	2.503	2.485
1 b (M, P)	-127.77	155.7	255.9	170.0	194.6	3.881	2.505
1b (M, C)	-134.97	119.9	247.3	167.6	162.2	2.450	2.476
1a (X, P)	-93.47	152.6	212.6	143.6	180.0	6.052	2.524
1a (X, C)	-98.81	130.4	231.9	140.6	163.5	4.925	2.472
la (M, C)	-101.96	120.9	248.1	162.8	164.9	2.471	2.476
19 (X, C) ${ }^{\text {d }}$	-100.98	118.8	254.3	141.7	170.4	2.221	2.492
1a (X, C) ${ }^{\text {e }}$	-101.32	101.7	224.6	158.3	162.9	2.464	2.480
$\mathbf{2 b}$ (X, C)	-130.64	-27.7	215.8	194.3	192.5	2.370^{f}	2.500
$2 \mathrm{~b}(\mathrm{M}, \mathrm{C})$	-134.11	28.7	244.3	182.8	195.3	2.5778	2.498
2a (M, C)	-101.49	25.2	238.5	201.3	193.1	2.798^{8}	2.493

${ }^{6}$ Source: $\mathrm{X}=\mathrm{X}$-ray; $\mathrm{M}=$ molecular mechanics. ${ }^{b}$ Optimization: $\mathrm{P}=$ partial; $\mathrm{C}=$ complete. ${ }^{6} \tau_{1}=\mathrm{H}^{\prime}-\mathrm{Cl} 1^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{H} 2^{\prime}, \tau_{2}=\mathrm{H} 3^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{H} 4^{\prime}$, $\tau_{3}=\mathrm{C} 2^{\prime}-\mathrm{Cl}{ }^{\prime}-\mathrm{N}-\mathrm{C} 8$, and $\tau_{4}=\mathrm{C} 1^{\prime}-\mathrm{N}-\mathrm{C} 8-\mathrm{C} 9 .{ }^{d}$ Generated from the X-ray crystal structure of the blocked nucleosides. ${ }^{9}$ 'Generated from the X-ray structure of β-MRPP. ${ }^{f} \mathrm{O}^{\prime}-\mathrm{H}(\mathrm{N})$ distance. ${ }^{s} \mathrm{O}^{\prime}-\mathrm{H}(\mathrm{N})$ distance.

Table IX. Observed and Calculated $\mathrm{H} 1^{\prime}-\mathrm{H}^{\prime}$ and $\mathrm{H}^{\prime}-\mathrm{H} 4^{\prime}$ Coupling Constants Using Karplus' Equation and Haasnoot's Modification ${ }^{\text {a }}$

correspond to an approximate S to N distribution of $\mathbf{6 0 : 4 0}$ for the conformations of the sugar rings. This evidence for normal S and N sugar puckering in compounds 1 , coupled with the MM studies and the solid-state structures, suggests that $\mathrm{N} H \ldots 5^{\prime}$ hydrogen bonding is doubtful.

The above ambiguities led us to synthesize 5^{\prime}-deoxy-MRPP \{4-methoxy-8-[(5-deoxy- β-D-ribofuranosyl)amino] pyrimido[5,4d] pyrimidine (3d)], in which the possibility of $\mathrm{NH} \cdot \ldots{ }^{\prime} 5^{\prime}$ hydrogen bonding is eliminated by the absence of O5'. Following the standard deoxygenation procedure, 2,6-dichloro-4-methoxy-8-[(2,3-O-isopropylidene- β-D-ribofuranosyl)amino] pyrimido [5,4d] pyrimidine (3a) was iodinated by using methyltriphenoxyphosphonium iodide ${ }^{12}$ (Rydon reagent) in DMF to give 3b, which was subsequently hydrogenated by using Pd / C to give 3 c . Deisopropylidenation of 3 c with TFA/ $\mathrm{H}_{2} \mathrm{O}$ provided 3 d as a crystalline product in 20% overall yield. The ${ }^{1} \mathrm{H}$ NMR of 3 d in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ exhibited an NH chemical shift of 8.92 ppm at 297 K and 8.30 ppm at 360 K . This observation clearly demonstrated that the upfield shift of the $\mathrm{N} H$ proton resonance with increasing temperature in 1 was not due to intramolecular hydrogen bonding that had been postulated.

The upfield shift of the resonance of the exocyclic $\mathrm{N} H$ proton may be explained by conformational changes affecting the environment of the proton. Thus, we analyzed the conformational energies of the nucleosides $\mathbf{1}, 2$, and 3 d as a function of the dihedral angles about the $\mathrm{Cl}^{\prime}-\mathrm{N}\left(\omega_{5}\right)$ and $\mathrm{N}-\mathrm{C} 8$ bonds (ω_{6}). During this analysis, all other dihedral angles were fixed at their global minimum-energy values. Only the rotation of ω_{5} showed a considerable difference between the α - and β-anomers (see Figure 5). Each of the α-anomers 2 a and $\mathbf{2 b}$ has a single energy minimum. The β-anomers 1 and 3 d , on the other hand, possess metastable local minima at $\omega_{\mathrm{g}} \sim 100^{\circ}$, which represents a rotation about the $\mathrm{Cl}^{\prime}-\mathrm{N}$ bond of $60-70^{\circ}$ from the MO-optimized structures. Because the energy barrier separating these two minima is small, the corresponding conformations will be in equilibrium at all temperatures at which the ${ }^{1} \mathrm{H}$ NMR spectra
were studied. However, due to the principle of mobile equilibrium, ${ }^{35}$ the relative concentrations will change with temperature such that the population of the metastable conformation will increase with increasing temperature. This change in relative concentrations of the two conformations can explain the smooth reversible shift of this resonance of the exocyclic $\mathrm{N} H$ proton of the β-anomers.

Conclusion

The observed upfield shifts of $0.5-0.63 \mathrm{ppm}$ for the resonances of the $\mathbf{N H}$ proton in 1 and 3 d over the temperature range 297 $\rightarrow 360 \mathrm{~K}$ are interpreted in terms of a conformational change about the $\mathrm{Cl}^{\prime}-\mathrm{N}$ bond rather than the breaking of an intramolecular hydrogen bond. Although $\mathrm{N} H \ldots \mathrm{OS}^{\prime}$ hydrogen bonding has been observed in the crystal structures of some $2^{\prime}, 3^{\prime}-O$-iso-propylidene-blocked nucleosides, ${ }^{1,9}$ neither of the deblocked nucleosides (1a and 1b) showed such hydrogen bonding. The MM calculations showed that H -bonding is not possible for regular S or \mathbf{N} puckered ribofuranosyl conformations. The $\mathrm{Hl}^{\prime}-\mathrm{H}^{\prime}$ and $\mathrm{H} 3^{\prime}-\mathrm{H}^{\prime}$ coupling constants suggest S and N pucker in these nucleosides.

The solid-state molecular conformation of ARPP (1a), as reported by Narayanan and Berman, ${ }^{10}$ has very high energy. The solid-state conformations of $\mathbf{1 b}$ and $\mathbf{2 b}$ reported in this study are very similar in energy and very close to the lowest energy conformations obtained from the MM and MO optimizations. There is, however, one significant difference between the α - and β anomers in the rotational properties of the $\mathrm{Cl}^{\prime}-\mathrm{N}$ bond. The α-anomers have only one energy minimum, whereas the β-anomers have two energetically close minima. The reversible upfield shift of the exocyclic amino proton resonance may be due to a change in the equilibrium between these two conformations.

In all the experimentally determined and theoretically calculated structures, we find one common feature of the bridging amine relative to the heterocyclic ring. The exocyclic $\mathrm{N} H$ proton is eclipsed to the N 1 nitrogen of the heterocycle. Such an arrangement forms a quasi-five-membered ring, thereby creating a resemblance with adenosine. ${ }^{8}$ Such a resemblance may also be created in a system like 5 -fluoro-4-(β-D-ribofuranosylamino) pyrimidine and related compounds and may be the basis for the future synthesis of biologically active compounds related to purine nucleosides.

Supplementary Material Available: Tables of anisotropic thermal parameters, bond lengths and angles involving H atoms, torsion angles, and least-squares planes and a list of additional torsional parameters used in the CONFOR program (9 pages); structure factor amplitudes for both structures $\mathbf{1 b}$ and $\mathbf{2 b}$ (14 pages). Ordering information is given on any current masthead page.
(35) Glasstone, S. Text Book of Physical Chemistry; MacMillan: London, 1946; p 828.

[^0]: (1) Sanghvi, Y. S.; Larson, S. B.; Matsumoto, S. S.; Nord, L. D.; Smee, D. F.: Willis, R. C.; Avery, T. L.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1989, 32, 629.
 (2) Moss, R. J.; Petrie, C. R.; Meyer, R. B., Jr.; Nord, L. D.; Willis, R C.; Smith, R. A.; Larson, S. B.; Kini, G. D.; Robins, R. K. J. Med. Chem. 1988, 3l, 786.
 (3) Sanghvi, Y. S.: Larson, S. B.; Robins, R. K.; Revankar, G. R.; Gupta, P. K.; George, R. D.; Dalley, N. K. J. Heterocycl. Chem. 1988, 25, 623. (4) Berman, H. M.: Rousseau, R. J.; Mancuso, R. W.; Kreishman, G. P.; Robins, R. K. Tetrahedron Lett. 1973, 14, 3099
 (5) Westover, J. D.; Revankar, G. R.; Robins, R. K.; Madsen, R. D.: Ogden, J. R.; North, J. A.; Mancuso, R. W.; Rousseau, R. J.; Stephan, E. L. J. Med. Chem. 1981, 24, 941.
 (6) (a) Willis, R. C.; Nord, L. D.; Fujitaki, J. M.; Robins, R. K. Adv. Enzyme Regul. 1989, 28, 167. (b) Nord, L. D.; Willis, R. C.: Breen, T. S. Avery, T. L.; Finch, R. A.; Sanghvi, Y. S.; Revankar, G. R.; Robins, R. K. Biochem. Pharmacol. 1989, 38, 3543.
 (7) Ghose, A. K.; Crippen, G. M.; Revankar, G. R.; Smee, D. F.; McKernan, P. A.; Robins, R. K. J. Med. Chem. 1989, 32, 746.

[^1]: (27) Ghose, A. K.; Crippen, G. M. J. Med. Chem. 1984, 27, 901
 (28) Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. J. Chem. Inf. Comput. Sci. 1989, 29, 163.
 (29) (a) QCPE Program No. 395; Department of Chemistry, Indiana University: Bloomington, IN. (b) N. L. Allinger, private communication, MMP2 1985 parameters, June 17, 1987.
 (30) QCPE Program No. 506; Department of Chemistry, Indiana University: Bloomington, IN.
 (31) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.

[^2]: (32) Sanghvi, Y. S.; Larson, S. B.; Willis, R. C.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1989, 32, 945.

[^3]: (34) Our recent studies ${ }^{8}$ show that nucleosides $\mathbf{1}$ and $\mathbf{2}$ anomerize rapidly in acidic solution and there was no change in 1 and 2 when ${ }^{1} \mathrm{H}$ NMR were recorded in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$.

